الخطوط الأمامية لكرة القدم

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة(ComplexNumbers) << ريلز << الصفحة الرئيسية الموقع الحالي

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1شرحدرسالأعدادالمركبة

تاريخالأعدادالمركبة

ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتكعيبية.لميكنهناكتفسيرمنطقيلهذهالأعدادفيالبداية،ولكنمعتطورالرياضيات،أصبحتأساسيةفيالعديدمنالمجالات.

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبة

  1. الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
  2. الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
  3. القسمة:يتمضربالبسطوالمقامفيمرافقالمقام

التمثيلالهندسي

يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

الصيغةالقطبية

يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاويةمعالمحورالحقيقي

شرحدرسالأعدادالمركبة(ComplexNumbers)

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
  2. فيمعالجةالإشاراتالرقمية
  3. فيميكانيكاالكم
  4. فيالرسوماتالحاسوبية

خاتمة

الأعدادالمركبةليستمجردمفهومنظري،بللهاتطبيقاتعمليةواسعةفيالعديدمنالمجالاتالعلميةوالتقنية.فهمهذهالأعداديفتحالبابلفهمأكثرتعقيدًاللرياضياتوتطبيقاتهافيالعالمالحقيقي.

شرحدرسالأعدادالمركبة

مقدمةعنالأعدادالمركبة

الأعدادالمركبةهيأعدادتتكونمنجزئين:جزءحقيقيوجزءتخيلي.يتمالتعبيرعنهابالصيغةالعامةa+biحيث:-aهوالجزءالحقيقي-bهوالجزءالتخيلي-iهيالوحدةالتخيليةحيثi²=-1

شرحدرسالأعدادالمركبة

تاريخالأعدادالمركبة

ظهرتفكرةالأعدادالمركبةلأولمرةفيالقرنالسادسعشرعندماحاولعلماءالرياضياتحلالمعادلاتالتيلايوجدلهاحلفينطاقالأعدادالحقيقية.تمتطويرهذاالمفهومبشكلكاملفيالقرنالثامنعشربواسطةعالمالرياضياتليونهاردأويلر.

شرحدرسالأعدادالمركبة

خصائصالأعدادالمركبة

  1. الجمعوالطرح:(a+bi)±(c+di)=(a±c)+(b±d)i
  2. الضرب:(a+bi)(c+di)=(ac-bd)+(ad+bc)i
  3. القسمة:يتمضربالبسطوالمقامفيمرافقالمقام

التمثيلالهندسيللأعدادالمركبة

يمكنتمثيلالعددالمركبعلىالمستوىالديكارتيحيث:-المحورالأفقييمثلالجزءالحقيقي-المحورالرأسييمثلالجزءالتخيلي-هذاالتمثيليعرفباسم"مستوىالأعدادالمركبة"أو"مستوىأرغاند"

شرحدرسالأعدادالمركبة

الصيغةالقطبيةللأعدادالمركبة

يمكنالتعبيرعنالعددالمركببالصيغةالقطبية:r(cosθ+isinθ)حيث:-rهوالمقياس(الطول)-θهيالزاوية(الوسيطة)

شرحدرسالأعدادالمركبة

تطبيقاتالأعدادالمركبة

  1. فيالهندسةالكهربائيةلحسابدوائرالتيارالمتردد
  2. فيمعالجةالإشاراتالرقمية
  3. فيميكانيكاالكم
  4. فيالرسوماتالحاسوبية

خاتمة

الأعدادالمركبةتلعبدوراًأساسياًفيالعديدمنفروعالرياضياتوالعلومالتطبيقية.فهمهايتطلبإدراكالعلاقةبينالجزءالحقيقيوالتخيلي،وكيفيةتمثيلهاهندسياًوجبرياً.معالتقدمفيدراسةهذاالموضوع،سيكتشفالطالبعالمًاغنيًامنالتطبيقاتالعمليةوالنظرية.

شرحدرسالأعدادالمركبة

قراءات ذات صلة

يلا كورة الدوري المصري مباريات اليوممواعيد وأهم التفاصيل

مباريات الزمالك القادمه في الكونفدراليه الافريقيهكل ما تريد معرفته

مباريات اليوم السعودية واليمن مباشرمواجهات نارية في البطولات العربية

مباريات اليوم دوري أبطال أوروبا يوم الخميس

نتيجة مباراة الأهلي والزمالك في الدوري المصري

مباريات القسم الثاني المغربي اليومكل ما تحتاج إلى معرفته

مباريات الغد الدوري المصري مباشرمواعيد وأهمية المباريات القادمة

مباريات اليوم الدوري الأردني بث مباشرمواعيد وروابط المشاهدة